From Definition to Therapy: A Comprehensive Article Review of Galactosemia

Authors

  • Amjed Torki Al-Rudaini Department of Biology, College of Science, University of Baghdad, Baghdad, Iraq Author

    DOI:

    https://doi.org/10.65329/wjeb.v13.02.002

    Keywords:

    Galactosemia, Metabolic Disease, Genetic Disorder, Newborn Screening Programs, Therapeutic Strategies

    Abstract

    Galactosemia is a medical disorder that affects the body's ability to metabolize galactose. After infants ingest galactose from breast milk or formula, those with the condition can develop a life-threatening illness accompanied by feeding problems. Infants with galactosemia can be identified through newborn screening programs (NBS) or by symptoms that appear in the first weeks after birth. If untreated, infants may suffer kidney and liver damage, develop cataracts, and experience severe infections. Some countries offer newborn screening programs to help with the early detection and treatment of galactosemia. This article review aims to define galactosemia, its types, signs and symptoms, diagnosis, and ways it can be prevented or managed.

    Author Biography

    References

    [1] Cerone J, Rios A. (2019) Galactosemia. Pediatr Rev 40(1):24–27. https://doi.org/10.1542/pir.2018-0150

    [2] Succoio M, Sacchettini R, Rossi A, Parenti G, Ruoppolo M. (2022) Galactosemia: Biochemistry, Molecular Genetics, Newborn Screening, and Treatment. Biomolecules 12: 968.

    https://doi.org/10.3390/biom12070968.

    [3] Coss KP, Doran PP, Owoeye C, Codd MB, Hamid N, et al. (2013) Classical Galactosaemia in Ireland: incidence, complications and outcomes of treatment. J Inherit Metab Dis 36(1): 21–27. https://doi.org/10.1007/s10545-012-9507-9

    [4] Pasquali M, Yu C, Coffee B. (2018) Laboratory diagnosis of galactosemia: a technical standard and guideline of the American College of Medical Genetics and Genomics (ACMG). Genet Med 20:3–11. https://doi.org/10.1038/gim.2017.172

    [5] Druss JJ, Rudd Zhong Manis J, Potter NL, Fridovich-Keil JL. (2023) Grip strength in patients with galactosemia and in a galactose-1-phosphate uridylyltransferase (GALT)-null rat model. J Inherit Metab Dis 46(6):1131- 1138. https://doi.org/10.1002/jimd.12684

    [6] Hermans ME, van Oers HA, Geurtsen GJ, Haverman L, Hollak CEM, et al. (2023) The challenges of classical galactosemia: HRQoL in pediatric and adult patients. Orphanet J Rare Dis 18(1):135. https://doi.org/10.1186/s13023-023-02749-8.

    [7] Berry GT. (2000) Classic Galactosemia and Clinical Variant Galactosemia. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews®. Seattle (WA): University of Washington, Seattle; 1993- 2024. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1518.

    [8] Hughes J, Ryan S, Lambert D, Geoghegan O, Clark A, et al. (2009) Outcomes of siblings with classical galactosemia. J Pediatr 154: 721- 726. https://doi.org/10.1016/j.jpeds.2008.11.052 .

    [9] Almenabawy N, Bahl S, Ostlund AL, Ghai-Jain S, Sosova I, et al. (2024) Clinical and biochemical phenotypes, genotypes, and long-term outcomes of individuals with galactosemia type I from a single metabolic genetics center in Alberta. Mol Genet Metab Rep 38:101055. https://doi.org/10.1016/j.ymgmr.2024.101055

    [10] Berry GT. (2000) Classic Galactosemia and Clinical Variant Galactosemia. [Updated 2017 Mar 9]. In: Adam MP, Ardinger HH, Pagon RA, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2019. PMID:20301691.

    [11] Conte F, van Buuringen N, Voermans NC, Lefeber DJ. (2021) Galactose in human metabolism, glycosylation and congenital metabolic diseases: Time for a closer look. Biochim Biophys Acta Gen Subj 1865(8):129898. https://doi.org/10.1016/j.bbagen.2021.129898 . PMID: 33878388.

    [12] Coelho A I, Trabuco M, Silva M J, de Almeida I T, Leandro et al. (2015) Arginine Functionally Improves Clinically Relevant Human Galactose-1- Phosphate Uridylyltransferase (GALT) Variants Expressed in a Prokaryotic Model. JIMD reports 23: 1–6. https://doi.org/10.1007/8904_2015_420

    [13] Bell D. (2012) Natural monosaccharides and oligosaccharides: their structures and occurrence. In Florkin M, editor. Comparative biochemistry: a comprehensive treatise. 3: 287–354.

    [14] Brockway, M A I, Daniel S M, Reyes M, Granger J M, McDermid D, et al. (2024) Human milk macronutrients and child growth and body composition in the first two years: A systematic review. Adv Nutr 15 (1):100149. https://doi.org/10.1016/j.advnut.2023.100149.

    [15] Wood IS, Trayhurn P. (2003) Glucose transporters (GLUT and SGLT): expanded families of sugar transport proteins. Br J Nutr 89:3–9. https://doi.org/10.1079/BJN2002763

    [16] Drozdowski L A, Thomson AB. (2006) Intestinal sugar transport. World J Gastroenterol 12 (11): 1657–1670. https://doi.org/10.3748/wjg.v12.i11.1657

    [17] Holden HM, Rayment I, Thoden JB. (2003) Structure and function of enzymes of the Leloir pathway for galactose metabolism. J Biol Chem 278 (45):43885 43888. https://doi.org/10.1074/jbc.r300025200

    [18] Grossiord B, Elaine E. Vaughan, Evert Luesink, Willem M. de Vos. (1998) Genetics of galactose utilisation via the Leloir pathway in lactic acid bacteria. Le Lait 78 (1): 77-84.https://hal.science/hal-00929560v1

    [19] Tang M, Etokidem E, Lai K. (2016) The Leloir pathway of Galactose metabolism - a novel therapeutic target for hepatocellular carcinoma. Anticancer Res 36 (12): 6265–6271. https://doi.org/10.21873/anticanres.11221

    [20] Wallenfels K, Hucho F, Herrmann K. (1965) Enzymatically catalyzed mutarotation of aldoses. Studies on aldose-1-epimerase from E. coli. Biochem Z 343 (3) :307–325.PMID: 4290293

    [21] Thoden JB, Timson D J, Reece R J, Holden HM. (2004) Molecular structure of human galactose mutarotase. J Biol Chem 279 (22): 23431– 23437. https://doi.org/10.1074/jbc.M402347200

    [22] Pai T, Chen Q, Zhang Y, Zolfaghari R, Ross AC. (2007) Galactomutarotase and other galactose-related genes are rapidly induced by retinoic acid in human myeloid cells. Biochemistry 46(51):15198-207. https://doi.org/10.1021/bi701891t

    [23] Walker D G, Khan H H. (1968) Some properties of galactokinase in developing rat liver. ,Biochem J 108 (2):169–175. https://doi.org/10.1042/bj1080169

    [24] Maria E Ortiz-Soto, Makarius B, Daniela B, Malte T, Jürgen S. (2023) Single-mutations at the galactose-binding site of enzymes GalK, GalU, and LgtC enable the efficient synthesis of UDP-6-azido-6-deoxy-D- galactose and azido-functionalized Gb3 analogs. Glycobiology 33 (8): 651–660. https://doi.org/10.1093/glycob/cwad045

    [25] McCorvie TJ, Kopec J, Pey A, Fitzpatrick L, Patel F, et al. (2016) Molecular basis of classic galactosemia from the structure of human galactose 1- phosphate uridylyltransferase. Hum Mol Genet 25: (11) 2234–2244. https://doi.org/10.1093/hmg/ddw091

    [26] Frey PA, Hegeman A D. (2013) Chemical and stereochemical actions of UDP-galactose 4-epimerase. Acc Chem Res 46(7):1417–1426. https://doi.org/10.1021/ar300246k

    [27] Timson D J. (2006) The structural and molecular biology of type III galactosemia, IUBMB Life 58 (2): 83–89. https://doi.org/10.1080/15216540600644846

    [28] Demirbas D, Coelho A I, Rubio-Gozalbo M E, Berry G T. (2018) Hereditary galactosemia. Metabolism 83:188–196. https://doi.org/10.1016/j.metabol.2018.01.025

    [29] Fushinobu S. (2021) Molecular evolution and functional divergence of UDP-hexose 4-epimerases. Curr Opin Chem Biol 61: 53-62. https://doi.org/10.1016/j.cbpa.2020.09.007

    [30] Nolting K, Park JH, Tegtmeyer L C, Zühlsdorf A, Grüneberg M, et al. (2017) Limitations of galactose therapy in phosphoglucomutase 1 deficiency. Mol Genet Metab Rep 13:33–40. https://doi.org/10.1016/j.ymgmr.2017.07.010

    [31] Conte F, Ashikov A, Mijdam R, van de Ven E G P, van Scherpenzeel, M, et al. (2023) In Vitro Skeletal Muscle Model of PGM1 Deficiency Reveals Altered Energy Homeostasis. Int J Mol Sci 24(9):8247. https://doi.org/10.3390/ijms24098247.

    [32] Mungai L W, Mariana M, Mercy K, Hiwot N, Phoebe W, et al. (2024) Galactosemia: A Century Later, Still, the Needed Food that Turned Toxic to the Body. Afr J Pediatr Endocrinol Metab 1(2): 68-72.

    [33] Bonnardeaux A, Bichet DG. Inherited disorders of the renal tubule. In: Skorecki K, Chertow GM, Marsden PA, Taal MW, Yu ASL (Eds.), Brenner and Rector's The Kidney. 10th ed. Philadelphia, PA: Elsevier, 2016,chap 45.

    [34] Randall JA, Sutter C, Wang S, Bailey E, Raither L, et al. (2022) Qualitative interviews with adults with Classic Galactosemia and their caregivers: disease burden and challenges with daily living. Orphanet J Rare Dis 17(1):138. https://doi.org/10.1186/s13023-022-02287-9

    [35] Cantley N W P, Barski R, Kemp H, Hogg SL, Wu HYT, et al. (2024) Incidental Detection of Classical Galactosemia through Newborn Screening for Phenylketonuria: A 10-Year Retrospective Audit to Determine the Efficacy of This Approach. Int J Neonatal Screen 10(2). https://doi.org/10.3390/ijns10010002.

    [36] Arif H S, Thejeal RF, Farhan A. (2016) Inborn Errors of Metabolism Status in Iraq. IOSR J Pharm Biol Sci 2 (2): 58-62. https://doi.org/10.9790/3008-1102025862

    [37] Senemar S, Ganjekarimi AH , Senemar S, Tarami B , Bazrgar M. (2011) The Prevalence and Clinical Study of Galactosemia Disease in a Pilot Screening Program of Neonates, Southern Iran. Iranian J Publ Health 40 (4):99-104. https://pubmed.ncbi.nlm.nih.gov/23113108/

    [38] Wada Y, Kikuchi A, Arai-Ichinoi N, Sakamoto O, Takezawa Y, et al. (2019). Biallelic GALM pathogenic variants cause a novel type of galactosemia. Genet Med 21(6):1286-1294. https://doi.org/10.1038/s41436-018-0340-x

    [39] Kalay I, Gulec C, Balcı M C, Toksoy G, Gokcay G, et al. (2023) Novel GALT variations and genetic spectrum in Turkish population with the correlation of genotype and phenotype. Ann Hum Genet 87(6): 285-294. https://doi.org/10.1111/ahg.12523

    [40] Krasowski M D, Pelletier D. Liver, Gastrointestinal, Pancreas, Biliary Tract. Clinical Pathology Board Review E-Book,2024.

    [41] Stettner N M, CutlerD J, Fridovich-Keil J L. (2023) Racial and ethnic diversity of classic and clinical variant galactosemia in the United States. Mol Genet Metab 138(4):107542. https://doi.org/10.1016/j.ymgme.2023.107542

    [42] Kitatani K, Idkowiak-Baldys J, Hannun YA. (2007) The sphingolipid salvage pathway in ceramide metabolism and signaling. Cell Signal 20(6):1010–1018. https://doi.org/10.1016/j.cellsig.2007.12.006

    [43] Turková J, Vohník S, Helusová S, Benes MJ, Tichá M. (1992) Galactosylation as a tool for the stabilization and immobilization of proteins. J Chromatogr 597(1–2):19–27. https://doi.org/10.1016/0021-9673(92)80093-A

    [44] Maverakis E, Kim K, Shimoda M, Gershwin M E, Patel F, et al. (2015) Glycans in the immune system and the Altered Glycan Theory of Autoimmunity: a critical review. J Autoimmun 57: 1–13. https://doi.org/10.1016/j.jaut.2014.12.002

    [45] Therrell BL Jr. (2001).US newborn screening policy dilemmas for the twenty-first century. Mol Genet Metab 74(1-2):64-74. https://doi.org/10.1006/mgme.2001.3238

    [46] Guthrie R, Susi A. (1963) A simple phenylalanine method for detecting phenylketonuria in large populations of newborn infants. Pediatrics 32(3):338-343. https://doi.org/10.1006/mgme.2001.3238

    [47] Taj-Aldeen F M, Abutiheen A AK, Al-Abadi M F K, Alkhafaji A F. (2019) Assessment of Neonatal Screening Program over 5 years in Karbala Governorate. Indian J Public Health Res Dev 10(2):970-974. https://dx.doi.org/10.5958/0976-5506.2019.00422.4

    [48] Clarke JTR. (2005) Newborn screening. A clinical guide to inherited metabolic diseases. Cambridge University Press, Cambridge 228–240.

    [49] Coelho AI, Rubio-Gozalbo ME, Vicente JB, Rivera I. (2017). Sweet and sour: an update on classic galactosemia. J Inherit Metab Dis 40: 325–342. https://doi.org/10.1007/s10545-017-0029-3.

    [50] Waisbren S E, Read C Y, Ampola M, Brewster T G, Demmer L. (2002) Newborn screening compared to clinical identification of biochemical genetic disorders. J Inherit Metab Dis 25(7): 599–600. https://doi.org/10.1023/a:1022003726224

    [51] Khalaf S M, El-Tellawy M M, Refat N H, Abd El-Aal A M. (2019) Detection of some metabolic disorders in suspected neonates admitted at Assiut University Children Hospital. Egypt J Med Hum Genet 20:29. https://doi.org/10.1186/s43042-019-0030-5

    [52] Delnoy B, Coelho A, Rubio-Gozalbo M. (2021) Current and Future Treatments for Classic Galactosemia. J Pers Med 11(2):75. https://doi.org/10.3390/jpm11020075

    [53] Caro NAR, Cornejo V, Guevara-Morales JM, Echeverri-Peña OY. (2022) Advances and Challenges in Classical Galactosemia. Pathophysiology and Treatment. J Inborn Errors Metab Screen 10. https://dx.doi.org/10.1590/2326-4594-jiems-2021-0026

    [54] Fridovich-Keil JL, Walter JH, Galactosaemia chapter 72: Valle D, Vogelstein B, Kinzler KW, Antonarakis SE, Ballabio A et al (Eds.), The Online Metabolic and Molecular Bases of Inherited Disease, OMMBID, Part 7: Carbohydrates. McGraw Hill, New York ,2008.

    [55] Zlatunich CO, Packman S. (2005) Galactosaemia: early treatment with an elemental formula. J Inherit Metab Dis 28:163–8. https://doi.org/10.1007/s10545-005-5516-2

    [56] Schadewaldt P. (2004) Age dependence of endogenous galactose formation in Q188R homozygous galactosemic patients. Mol Genet Metab 81:31–44. https://doi.org/10.1016/j.ymgme.2003.10.007

    [57] Batey L A, Welt C K, Rohr F, Wessel A, Anastasoaie V. (2013) Skeletal health in adult patients with classic galactosemia. Osteoporos Int 24(2):501–509. https://doi.org/10.1007/s00198-012-1983-0

    [58] Cring MR, Sheffield VC. (2022) Gene therapy and gene correction: Targets, progress, and challenges for treating human diseases. Gene Ther 29(1-2): 3–12. https://doi.org/10.1038/s41434-020-00197-8

    [59] Rutten MG, Rots MG, Oosterveer MH. (2020) Exploiting epigenetics for the treatment of inborn errors of metabolism. J Inherit Metab Dis 43: 63–70. https://doi.org/10.1002/jimd.12093

    [60] Schneller JL, Lee CM, Bao G, Venditti CP. (2017) Genome editing for inborn errors of metabolism: Advancing towards the clinic. BMC Med 15(1). https://doi.org/10.1186/s12916-017-0798-4

    [61] Chandler R J, Venditti CP. (2016) Gene Therapy for Metabolic Diseases. Transl Sci. Rare Dis 1:73–89. https://doi.org/10.3233/TRD-160007.

    [62] Yilmaz BS, Gurung S, Perocheau D, Counsell J, Baruteau J. (2020) Gene Therapy for Inherited Metabolic Diseases. J Mother Child 24(2): 53–64. https://doi.org/10.34763/jmotherandchild.20202402si.2004.000009.

    [63] Martini PG, Guey LT. (2019) A New Era for Rare Genetic Diseases: Messenger RNA Therapy. Hum Gene Ther 30: 1180–1189. https://doi.org/10.1089/hum.2019.090

    [64] Balakrishnan B, An D, Nguyen V, DeAntonis C, Martini PGV. (2020) Novel mRNA-Based Therapy Reduces Toxic Galactose Metabolites and Overcomes Galactose Sensitivity in a Mouse Model of Classic Galactosemia. Molecular 28: 304–312. https://doi.org/10.1016/j.ymthe.2019.09.018

    [65] Rasmussen SA, Daenzer JMI, Fridovich-Keil JL. (2021) A pilot study of neonatal GALT gene replacement using AAV9 dramatically lowers galactose metabolites in blood, liver, and brain and minimizes cataracts in GALT-null rat pups. J Inherit Metab Dis 44(1): 272–281. https://doi.org/10.1002/jimd.12311

    [66] Banford S, McCorvie TJ, Pey A L, Timson DJ. (2021) Galactosemia: Towards Pharmacological Chaperones. J Pers Med 11: 106. https://doi.org/10.3390/jpm11020106.

    [67] Leidenheimer N J, Ryder KG. (2014) Pharmacological chaperoning: A primer on mechanism and pharmacology. Pharmacol Res 83: 10–19. https://doi.org/10.1016/j.phrs.2014.01.005

    [68] Haskovic M, Coelho A I, Bierau J, Vanoevelen JM, Steinbach LKM. (2020) Pathophysiology and targets for treatment in hereditary galactosemia: A systematic review of animal and cellular models. J Inherit Metab Dis 43(3): 392–408. https://doi.org/10.1002/jimd.12202.

    [69] McCorvie T J, Timson DJ. Chapter 11—Galactosemia: Opportunities for novel therapies. In Protein Homeostasis Diseases; Pey, A.L. (Eds.), Academic Press: Cambridge, MA, USA, 2020, pp. 221–245.

    [70] TaoYn X, Conn PM. (2018) Pharmacoperones as novel therapeutics for diverse protein conformational diseases. Physiol Rev 98:697–725. https://doi.org/10.1152/physrev.00029.2016

    [71] Muntau AC, Leandro J, Staudigl M, Mayer F, Gersting SW. (2014) Innovative strategies to treat protein misfolding in inborn errors of metabolism: Pharmacological chaperones and proteostasis regulators. J Inherit Metab Dis 37:505–523. https://doi.org/10.1007/s10545-014-9701-z

    [72] Mackinnon S R, Krojer T, Foster Wi R, Diaz-Saez L, Tang M, et al. (2021) Fragment Screening Reveals Starting Points for Rational Design of Galactokinase 1 Inhibitors to Treat Classic Galactosemia. ACS Chem Biol 16(4):586-595. https://doi.org/10.1021/acschembio.0c00498

    [73] Odejinmi S, Rascon R, Tang M, Vankayalapati H, Lai K. (2011) Structure- activity analysis and cell-based optimization of human galactokinase inhibitors. ACS Med Chem Lett 2: 667–672. https://doi.org/10.1021/ml200131j

    [74] Hu X, Zhang YQ, Lee OW, Liu L, Tang M, et al. (2019) Discovery of novel inhibitors of human galactokinase by virtual screening. J Comput Mol Des 33: 405–417. https://doi.org/10.1007/s10822-019-00190-3

    [75] Ai Y, Zheng Z, O’Brien-Jenkins A, Bernard D J, Wynshaw-Boris T, et al. (2000) A mouse model of galactose-induced cataracts. Hum Mol Genet 9: 1821–1827. https://doi.org/10.1093/hmg/9.12.1821

    [76] Obrosova I, Faller A, Burgan J, Ostrow E, Williamson JR. (1997) Glycolytic pathway, redox state of NAD(P)-couples and energy metabolism in lens in galactose-fed rats: Effect of an aldose reductase inhibitor. Curr Eye Res 16: 34–43. https://doi.org/10.1076/ceyr.16.1.34.5113

    [77] Yabe-Nishimura C. (1998) Aldose reductase in glucose toxicity: A potential target for the prevention of diabetic complications. Pharmacol Rev 50: 21–33. PMID: 9549756

    [78] Mizisin AP, Powell HC. (1993) Schwann Cell Injury is Attenuated by Aldose Reductase Inhibition in Galactose Intoxication. J Neuropathol Exp Neurol 52:78–86. https://doi.org/10.1097/00005072-199301000-00010

    [79] Rubio-Gozalbo ME, Derks B, Das AM, Meyer U, Moslinger D, et al. (2021). Galactokinase deficiency: Lessons from the GalNet registry. Genet. Med. Off. J Am Coll Med Genet 23(1): 202–210. https://doi.org/10.1038/s41436-020-00942-9.

    Graphic abstract

    Downloads

    Published

    2025-11-05

    Issue

    Section

    Review article

    How to Cite

    [1]
    Amjed Torki Al-Rudaini tran. 2025. From Definition to Therapy: A Comprehensive Article Review of Galactosemia. World Journal of Experimental Biosciences. 13, 2 (Nov. 2025), 26–32. DOI:https://doi.org/10.65329/wjeb.v13.02.002.