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1. INTRODUCTION 

Pseudomonas aeruginosa is an opportunistic Gram-negative 
bacterium that has high clinical importance because of its ability to 
cause different infections in immunocompromised patients and 
those with basic conditions, including cystic fibrosis, wounds, and 
burns [1]. It was found that adaptability and intrinsic resistance to 
several classes of antimicrobial agents make it a major reason of 
acquired infections, such as ventilator-associated lung infections, 
bacteremia, and urinary tract infections (UTIs) that link with 
catheter [2]. The biofilm formation by P. aeruginosa is a vital factor 
contributing to its persistence and resistance to different types of  

 
 
 
 

 
 
 
 
 

antibiotics [3]. Biofilms structurally form microbial communities 
implanted in an exopolysaccharide biomass that forms the 
metabolic activity of bacteria that attach to the different types of 
the surfaces [4]. In the pathogenic bacterium, the biofilm polymer 
matrix improves bacterial survival by restricting antibiotic 
penetration, facilitating gene transfer, and shielding cells from host 
innate and acquired immune responses [5]. This shielding 
environment enhances the development of persistent infections, 
making treatment problematic and leading to unsuccessful 
treatment outcomes [6].  Furthermore, the difference between the 
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Inhibition of adherence pathogenic bacteria, such as Pseudomonas aeruginosa, to the surfaces is one important approach 
that is employed by antibiotics against bacterial infectious diseases. The present study is aimed at determining the 
involvement of sub-inhibition concentrations of amoxicillin (AMX) in the modulation of P. aeruginosa capacity to produce the 
biofilm. The approach was to expose the P. aeruginosa to various sub-minimum inhibitory concentrations (MICs) of 
amoxicillin (AMX) and thereafter test the resultant biofilm formation by the bacteria under these exposure conditions. The 
research also determined the effect that sub-MICs of AMX have on surface hydrophobicity and bacterial aggregation. The 
findings were that sub-MICs of AMX influenced varying forms of biofilm formation. High sub-MIC of AMX (½ MIC) lowered 
the formation of the biofilm, while low sub-MICs enhanced the capacity for the bacteria to develop polystyrene microtiter 

plate biofilms. The influence that sub-MICs of AMX have on surface hydrophobicity and bacterial aggregation detection were 
similar to what they showed on the production of the biofilm. Low level sub-MICs concentrations of AMX (1/16, 1/32, and 1/64) 
enhanced surface hydrophobicity, while on the other hand ½ MIC AMX lowered the surface hydrophobicity of the bacteria. 
Sub-MICs of AMX (1/8, 1/16, 1/32, and 1/64) also enhanced the rate of bacterial aggregation for P. aeruginosa. The study 
concludes that sub-MICs of AMX improve the capacity for P. aeruginosa to produce biofilms by enhancing surface 
hydrophobicity and bacterial aggregation. 
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biofilm-forming cells and planktonic cells is the level of resistance 
to antibiotics and the modulation of virulence factor expression [7]. 
Variation in the P. aeruginosa strains to produce biofilms is 
increasingly recognized as a key factor in clinical outcomes. 
Strains that produce more biofilm are often associated with more 
persistent infections, higher resistance levels, and increased 
virulence [8.9]. Conversely, strains with weaker biofilm formation 
tend to be less pathogenic but can still be clinically relevant due to 
other resistance mechanisms [10]. Understanding how differences 
in biofilm formation impact virulence and antibiotic resistance is 
essential for unraveling the pathogenic success of P. aeruginosa 
[11]. 
This study aims to explore the differences in biofilm formation 
among P. aeruginosa strains and their relationship with virulence 
and antibiotic resistance by analyzing the interaction between 
biofilm production, pathogenicity, and antimicrobial susceptibility. 

2. MATERIALS and METHODS 

2.1. Bacterial Strains and Activation 

The isolate of P. aeruginosa procured from the microbiological Lab 
at the Department of Biology, University of Baghdad. The isolate 
was routinely subcultured on nutrient agar every week for short-
term preservation. The bacterial isolate of P. aeruginosa was 
stored for the long term in nutrient broth (supported with 20% 
glycerol) at -20 oC.    

2.2 Minimum Inhibitory Concentration 

The method that described by Al-Mutalib and Zgair (2023) was 
followed to measure the minimum inhibitory concentrations (MICs) 
of amoxicillin (AMX, AdvaCare Pharma, USA) against P. 
aeruginosa. The MIC was defined as the lowest concentration of 
the amoxicillin (AMX) that totally inhibited visible growth of P. 
aeruginosa [12]. 

2.2 Biofilm Formation  

The P. aeruginosa in Tryptic soy broth (Himedia, TSB) for 18 h 
was washed, and the density of bacterial suspension was adjusted 
with TSB to be 0.1 at 600 nm. Hundred microliters of TSB were 
added to each well of a flat shape polystyrene microtiter plate 
(Nunc, Denmark), and then 10 µL of bacterial inoculum was 
applied to the wells. The plates were incubated for 18 h at 37 oC. 
After incubation, the plates were washed with distilled water. The 
plates were dried at 55 oC for an hour, and then 100 µL of crystal 
violet (Himedia) was added to each well. The plates were washed 
three times with distilled water after incubation at 21 oC for 15 min. 
One hundred microliters of 99% ethanol (Fluka) were added to 
each well.  The absorptance was taken at 590 nm using a 
microplate reader (BioTek 800, USA). TSB medium without any 
bacterial solution was used as a blank control [13]. Similar method 
was repeated using serial dilution of Sub-MICs of amoxicillin.  

2.3. Surface Hydrophobicity of Bacteria 

The microbial hydrocarbon adsorption capacity technique was 
used to measure the hydrophobicity of bacterial surfaces [14]. This 
method was done to the bacterial suspension exposed to the 
antibiotic (amoxicillin) and the results was compared with bacterial 
suspension exposed to PBS (pH 7.2; 0.1 M) The overnight 
bacterial culture of P. aeruginosa in TSB (Himedia) was 
centrifuged at 9000 g (Eppendorf, Germany) for 7 min, and then 
washed three times with phosphate-buffered saline (PBS, pH 7.2; 
0.1 M). The absorptance of the bacterial suspension was changed 
to 0.9 at OD600 nm (OD1). Bacterial suspension and hydrophobic 

solvent (chloroform/xylene, Sigma-Aldrich) were mixed in a ratio 
of 5:1 in tubes and left at 26 ◦C for 90 min, with PBS (blank control), 
and each sample was repeated 3 times, and the OD600 nm was 
measured (OD2). The surface hydrophobicity was calculated 
using the following equation: 

𝑆𝑢𝑟𝑓𝑎𝑐𝑒 ℎ𝑦𝑑𝑟𝑜𝑝ℎ𝑜𝑏𝑖𝑐𝑖𝑡𝑦 = (1 −
𝑂𝐷2

𝑂𝐷1
) 𝑥100% 

2.4. Self-Agglutination Rate 

The bacterial suspension was prepared according to the previous 
step of 2.3. The optical density of the bacterial inoculum was 
recorded as OD1. Another tube, composed of 5 mL of the same 
bacterial suspension with the same optical density and optical 
density at 600 nm, was prepared from the bacterial suspension 
after exposure to sub-MICs of amoxicillin, and the optical density 
was recorded as OD2. Dependent on the difference in absorbance 
of the bacterial solution before and after standing, the self-
agglutination rate of conditioned P. aeruginosa isolate (exposed to 
antibiotics) was calculated [15]: 

𝑆𝑒𝑙𝑓 − 𝑎𝑔𝑔𝑙𝑖𝑚𝑒𝑟𝑎𝑡𝑒 = (1 −
𝑂𝐷2

𝑂𝐷1
) 𝑥100% 

2.7. Statistical Analysis 

The data was conducted using Student's t-test and one-way 
analysis of variance (ANOVA). The OriginLab® Release of Origin® 
8.6 was used to analyze the data. p ≤ 0.05 was considered 
statistically significant. 

3. RESULTS 

3.1. Effect of AMX on Biofilm Formation 

In this experiment the MICs of amoxicillin against P. aeruginosa 
was measured. The MIC of amoxicillin was 500 µg/ml. The effect 
of different sub-MIC concentrations of amoxicillin on the biofilm 
production of P. aeruginosa was evaluated in the current study. It 
was found that the different sub-MICs of amoxicillin had an effect 
on the biofilm formation of P. aeruginosa in different ways 
according to the concentrations that were used.  
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Fig. 1. Effect of sub-MICs amoxicillin (AMX) on the biofilm formation of P. 

aeruginosa on polystyrene microtiter plates. Asterisks indicate a significant 

difference from the control group (P. aeruginosa treated with PBS, without 

antibiotic stress).   

The highest MIC concentrations of amoxicillin (½ and ¼ MICs) 
reduced biofilm formation, but the reduction was not significant 
compared with the control (biofilm formation of P. aeruginosa 
without antibiotic stress). The lowest concentrations of sub-MICs 
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AMX (1/16, 1/32, and 1/64) enhanced the biofilm formation 
significantly compared with the control.   

3.2. Surface Hydrophobicity  

Fig.2. depict the rate of hydrophobicity of P. aeruginosa treated 
with different concentrations of amoxicillin, the results were 
compared with the rate of hydrophobicity of P. aeruginosa treated 
with PBS (no antibiotic stress). The results showed a significant 
decrease in the hydrophobicity rate in P. aeruginosa treated with 
½ MIC amoxicillin, while no effect of ¼ and 1/8 MIC amoxicillin on 
the P. aeruginosa hydrophobicity rate. The significant elevation of 
the hydrophobicity rate was seen when the P. aeruginosa was 
treated with 1/16, 1/32, and 1/64 MIC amoxicillin (P<0.05).  
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Fig.2. Detection of surface hydrophobicity of P. aeruginosa exposed to 

different sub-MICs of amoxicillin. The rate of hydrophobicity of P. aeruginosa 

exposed to PBS represents the control. Asterisks indicate a significant 

difference from the control group 

3.3. Rate of Self-Aggregation  

The result of the present study showed the self-aggregation 
capacity of bacterial cells of P. aeruginosa treated with different 
sub-MICs of amoxicillin. The results showed that a significant 
elevation of aggregation rate was seen in the P. aeruginosa that 
was treated with 1/8, 1/16, 1/32, and 1/64 MICs of amoxicillin, 
P<0.05. No effect of the highest concentrations of MICs of 
amoxicillin on the aggregation capacity of P. aeruginosa.   

4. DISCUSSION 

The current study emphasizes the complex and concentration-
dependent effects of sub-inhibitory levels of amoxicillin (AMX) on 
P. aeruginosa's ability to form biofilms. Conventional antibiotic 
treatments aim to reduce bacterial growth; however, exposing 
bacteria to sub-MICs often produces conflicting results that may 
enhance pathogenicity rather than suppress it [12, 17,18]. Our 
findings showed that low sub-MIC levels of AMX significantly 
promoted biofilm formation, surface hydrophobicity, and bacterial 
aggregation, while higher sub-MIC levels (½ MIC) inhibited these 
processes. 
These results align with previous reports that sub-MICs of β-
lactam antibiotics can alter the physiology and virulence factor 
production in P. aeruginosa [19]. Low sub-MICs of AMX seem to 
promote initial adhesion and biofilm maturation by increasing cell 
surface hydrophobicity, which enhances stronger surface 
interactions with abiotic surfaces like polystyrene. This induction of 
adhesion correlates with increased bacterial aggregation, 

potentially contributing to microcolony formation and stabilization 
of the biofilm matrix [20]. The reduction in hydrophobicity and 
aggregation at higher sub-MIC levels is consistent with decreased 
biofilm formation, indicating that near-inhibitory sub-MICs of AMX 
may disrupt surface interactions necessary for effective 
colonization. 
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Fig.3. Detection of the aggregation rate of P. aeruginosa treated with different 

concentrations of MICs of amoxicillin. The control is the aggregation rate of P. 

aeruginosa treated with PBS. Asterisks indicate a significant difference from 

the control group   

The concentration-dependent dual effect of AMX highlights the 
delicate balance between bacterial adaptation and antibiotic 
pressure. At sub-MIC levels of lower magnitude, bacteria perceive 
AMX as stress and activate adaptive regulation, leading to biofilm-
based survival strategies. The formation of biofilm in this context 
is an adaptive response that makes bacteria more tolerant of 
antibiotics and host defenses. At higher sub-MIC levels, these 
adaptive responses may be weakened, resulting in decreased 
adherence and compromised biofilm stability [21]. 
Clinically, these observations are particularly concerning. Biofilms 
formed under low-dose antibiotic enhance the resistant to 
treatment that used the antibiotics and also resistance the host 
immune response. This may lead to chronic infections, especially 
in immunocompromised patients or those with indwelling medical 
devices. Additionally, biofilm-associated cells display phenotypic 
resistance, which can decrease the effectiveness of subsequent 
antibiotic treatments [22]. Therefore, using inappropriate antibiotic 
dosages may unintentionally promote persistence and complicate 
infection management. 
The results emphasize the link between hydrophobicity, cell 
aggregation, and biofilm formation. The observed increase in 
surface hydrophobicity and cell aggregation at sub-MIC levels of 
the chemical suggests that these phenotypic traits are key in 
initiating biofilm development. This aligns with previous findings 
indicating that hydrophobic bonding facilitates bacterial 
attachment to abiotic surfaces, while aggregation enhances 
biofilm structure by forming compact microcolonies [23]. The 
decline in these two traits at higher chemical concentrations likely 
explains the impaired biofilm formation seen under these 
conditions. 
Taken together, this study demonstrates the vitality of examining 
the unexpected effects of antibiotics at sub-inhibitory exposure 
levels. Although AMX effectively inhibits the growth of P. 
aeruginosa at therapeutic doses, improper dosage or suboptimal 
PK (Pharmacokinetics) could increase virulence through enhan-
ced biofilm formation [24]. Further research is needed to 
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investigate the molecular processes activated in response to sub-
MICs of AMX, including the regulation of quorum sensing and cell 
surface modifications. Such data may provide the foundation for 
developing countermeasures against biofilm-related tolerance and 
preventing therapy failure [20]. 

5. CONCLUSION 

In conclusion, this research demonstrates that sub-MICs of AMX 
produce dual effects on P. aeruginosa biofilm formation through 
changes in surface hydrophobicity and cell aggregation. The 
highest concentration of AMX reduced the biofilm formation, while 
the lowest sub-MIC concentrations enhanced the biofilm 
formation. Similar finding was seen when the surface 
hydrophobicity and aggregation of P. aeruginosa were measured 
when exposed to different sub-MIC concentrations of AMX. These 
findings not only clarify the mechanism of biofilm induction by 
antibiotics but also emphasize the risk of sub-therapeutic antibiotic 
levels in the clinical environment. 
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